Типы данных:

Тип	Область значений	Размер
sbyte	-128 до 127	Знаковое 8-бит целое
byte	0 до 255	Беззнаковое 8-бит целое
char	U+0000 до U+ffff	16-битовый символ Unicode
bool	true или false	1 байт
short	-32768 до 32767	Знаковое 16-бит целое
ushort	0 до 65535	Беззнаковое 16-бит целое
int	-2147483648 до 2147483647	Знаковое 32-бит целое
uint	0 до 4294967295	Беззнаковое 32-бит целое
long	-9223372036854775808 до 9223372036854775807	Знаковое 32-бит целое
ulong	0 до 18446744073709551615	Беззнаковое 32-бит целое
float	±1,5*10-45 до ±3,4*1033	4 байта, точность — 7 разрядов
double	±5*10-324 до ±1,7*10306	8 байт, точность —16 разрядов
decimal		12 байт, точность— 28 разрядов

Операции:

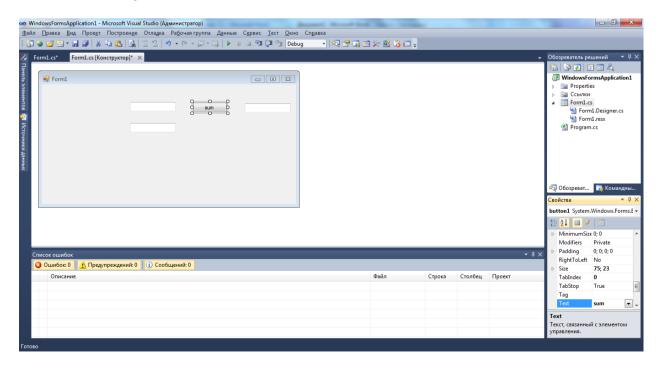
Операция	Назначение	Пример
+	Сложение	X = x + y;
_	Вычитание	X = x - y;
÷	Умножение	Z = x * y;
/	Деление	Z = x / y;
%	Деление по модулю	Z = t % e;

```
Math.Pow(x,n) возведение в степень n числа x (корень 1.0/n) например \sqrt{8} g = Math.Pow(8,1.0/2);
```

Деление по модулю возможно только для целых чисел. Оно обеспечивает получение остатка от деления двух целых чисел. Например, в результате операции 15 % 4 получится число 3. Таким образом, пара операций / и % обеспечивает для целых чисел специфическую возможность: можно получить и целую часть, и остаток от деления.

Арифметические операции можно объединять вместе с операцией присваивания, записывая две операции в виде одной. Это так называемая сокращённая форма записи.

Например:


обычная запись: a = a + Stoim; сокращённая форма: a+=Stoim;

Между двумя последними формами нет никакой разницы, если эти операции являются единственными в записи выражения, т.е. используются самостоятельно. Если же речь идёт об использовании в сложном выражении, то приходится учитывать, когда на самом деле выполняются эти операции. Суть в том, что при постфиксном варианте записи значение переменной сначала используется, а потом изменяется на 1. При префиксном, наоборот, сначала изменяется, а потом используется.

Например:

t = 5; // t = 5 n = 4 * t++; // n = 20, t = 6 k = ++n / 3; // n = 21, k = 7 b = --k / t; // k = 6, b = 1

Пример 1. Сложить два числа введённых в текстовые поля. Результат вывести в третье текстовое поле.


```
{
    int c;
    int a = Convert.ToInt32(textBox1.Text);
    int b = Convert.ToInt32(textBox2.Text);
    c=a+b;
    textBox3.Text = Convert.ToString(c);
}
```

Задание1: Найти сумму трех чисел, а так же произведение, разность, отношение, остаток от деления и возведение в степень двух чисел.