Билет № 1. Вопрос 1.

Информация и её свойства.

Информация и сигнал. Виды информации. Свойства информации. Информационные процессы.

<u>Информация</u> для человека - это содержание сигналов (сообщения), воспринимаемых человеком непосредственно или с помощью специальных устройств, расширяющее его знания об окружающем мире и протекающих в нём процессах.

В обыденной жизни под информацией понимают сообщения, сведения о чём-либо, которые получают и передают люди.

Сигналы могут быть непрерывные и дискретные.

Непрерывный сигнал принимает бесконечное множество значений из некоторого диапазона. Между значениями, которые он принимает, нет разрывов.

Дискретный сигнал принимает конечное число значений. Все значения дискретного сигнала можно пронумеровать целыми числами.

Сравните лестницу и наклонную плоскость. В первом случае имеется строго определенное количество фиксированных высот, равное числу ступенек. Все их можно пронумеровать. Наклонная плоскость соответствует бесконечному количеству значений высоты.

В жизни чаще всего человек имеет дело с непрерывными сигналами. Примерами непрерывных сигналов могут служить речь человека, скорость автомобиля, температура в некоторой географической точке в течение определенного периода времени и многое другое. Примером устройства, подающего дискретные сигналы, является светофор. Сигнал светофора может быть красным, желтым или зеленым, т.е. принимать всего три значения.

Виды информации.

По способу восприятия человеком:

- 1. Визуальная (с помощью органов зрения) 80-90 % информации получает человек
- 2. Аудиальная (с помощью органов слуха) 8-15 % всей информации получаемой человеком
- 3. Обонятельная (с помощью органов обоняния запахи)
- 4. Вкусовая (с помощью вкусовых рецепторов языка) \ 1-5 %
- 5. Тактильная (органы осязания кончики пальцев, кожа)

Информация нужна человеку, чтобы ориентироваться в окружающей обстановке и принимать правильные решения. Для этого информация должна обладать определенными свойствами.

Свойства информации:

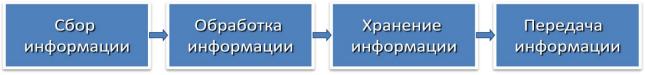
Объективность - не зависит от чьего-либо мнения, суждения.

Достоверность - отражает истинное положение дел.

Полнота - её достаточно для понимания ситуации и принятия решения.

Актуальность - важна для настоящего времени.

Полезность - оценивается по задачам, которые можно решить с её помощью.

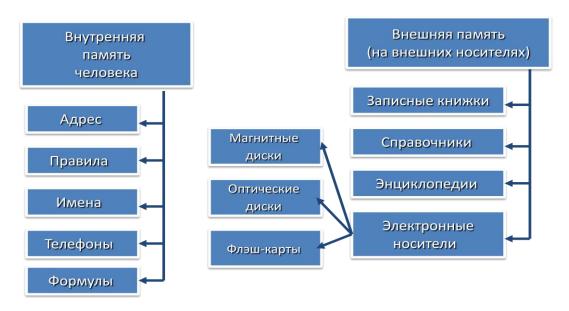

Понятность - выражена на языке доступном для получателя.

Информационные процессы.

Последовательная смена состояний (изменение) в развитии чего-либо называется процессом.

Информационными процессами называют процессы, связанные с изменением информации или действиями с использованием информации.

Основные **информационные процессы**: сбор информации, обработка информации, хранение информации, передача информации.



Информационной деятельностью человека называют деятельность, связанную с процессами сбора, представления, обработки, хранения и передачи информации.

Хранение информации

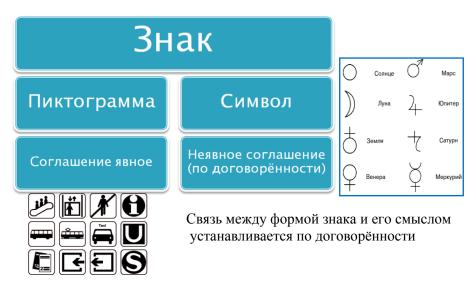
Сохранить информацию - это значит тем или иным способом зафиксировать её на некотором носителе.

Передача информации

Информация передаётся от источника к приёмнику по каналу связи.

Источник Кодирующее Канал Декодирующее Приемник информации устройство связи устройство информации

Билет № 2. Вопрос 1.


Представление информации.

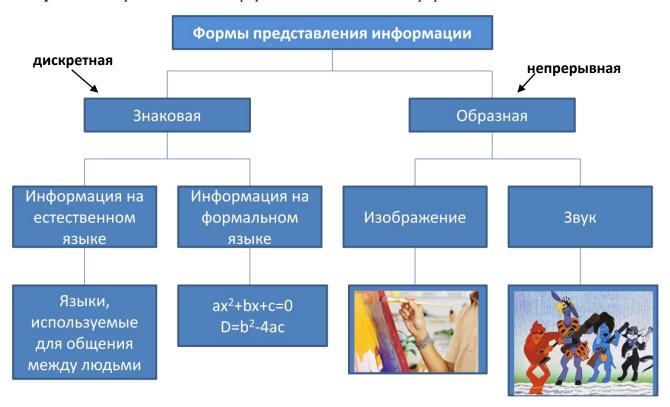
Знаки и знаковые системы. Естественные и формальные языки. Формы представления информации.

Информация, полученная человеком из опыта, наблюдений или путём размышлений, должна быть некоторым образом зафиксирована в материальной форме для сохранения и сообщения (передачи) другому человеку.

Всю свою историю для сохранения информации человечество пользуется разнообразными знаками.

- **Знак** представляет собой заменитель объекта.
- ▶ Знак (набор знаков) позволяет передающему информацию вызвать в сознании принимающего информацию образ объекта.
- **Знак** это явное или неявное соглашение о приписывании некоторому чувственно воспринимаемому объекту определённого смысла.

Форма знака позволяет догадаться о его смысле.


Люди используют отдельные знаки и знаковые системы.

Знаковая система определяется множеством всех входящих в неё знаков (алфавитом) и правилами оперирования этими знаками.

Одна и та же информация может быть выражена разными способами. Человек может представить информацию в знаковой или образной форме.

Кодирование - представление информации в той или иной форме.

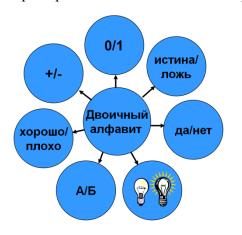
Билет № 3. Вопрос 1.

Двоичное кодирование. Преобразование информации из непрерывной в дискретную. Универсальность двоичного кодирования.

Дискретизация информации - процесс преобразования информации из непрерывной формы представления в дискретную (состоящую из частей, разрывную).

Например, при чтении вслух происходит преобразование информации из дискретной (текстовой) формы в непрерывную (звук). Во время диктанта, наоборот, происходит преобразование информации из непрерывной формы (голос учителя) в дискретную (записи учеников).

Информацию, представленную в дискретной форме, значительно проще передавать, хранить и обрабатывать. Чтобы представить информацию в дискретной форме, её следует выразить с помощью символов какого-нибудь естественного или формального языка. Таких языков тысячи. Каждый имеет свой алфавит.


Алфавит - набор отличных друг от друга символов (знаков), используемых для представления информации.

Мощность алфавита - количество входящих в него символов (знаков).

Двоичный алфавит - алфавит, содержащий два символа.

Двоичное кодирование - представление информации с помощью двоичного алфавита. Закодировав таким способом информацию, мы получим её *двоичный код*.

Примеры символов двоичного алфавита:

Любой алфавит можно заменить двоичным алфавитом, присвоив каждому символу исходного алфавита порядковый номер. И представить эти числа в двоичной системе счисления. Полученные двоичные числа и будут кодом исходного алфавита.

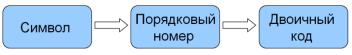


Схема перевода символа произвольного алфавита в двоичный код

Если кодировать 4 символа, то будет использоваться код состоящий из двух 0 и 1:

Порядковый номер символа	1	2	3	4
Двузначный двоичный код	00	01	10	11

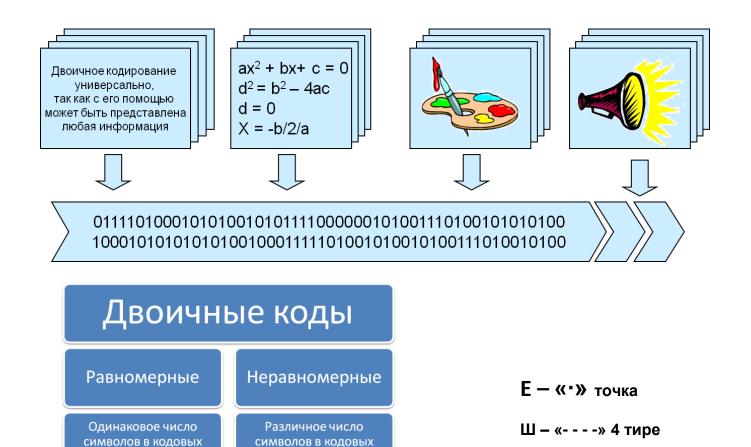
Для кодировки 8 символов потребуется уже трехзначный двоичный код:

Порядковый номер символа	1	2	3	4	5	6	7	8
Трехзначный двоичный код	000	001	010	011	100	101	110	111

То есть длина двоичной цепочки зависит от количества кодируемых символов, чем больше символов необходимо закодировать тем большей длины нужен код.

Разрядность двоичного кода – количество символов в двоичном коде (длина двоичной цепочки).

Разрядность	1	2	3	4	5	6	7	8
двоичного кода								
Количество кодовых комбинаций	2 •	4	8	16	32	64	128	256
/								


Можно проследить закономерность:

В общем виде: $N = 2^i$, где N – количество кодовых комбинаций, i – разрядность двоичного кода

Например, чтобы закодировать двоичным кодом русский алфавит, который состоит из 33 букв (N), воспользуемся этой формулой:

 $N=2^i,\,N=33$ подставим $33=2^i,\,$ надо найти такую степень двойки в которой числа кодовых комбинаций хватило бы для кодирования нужного количества символов. $2^5=32,\,32<33,\,$ т.е. кодовых комбинаций не хватит закодировать русский алфавит. $2^6=64,\,64>33\,$ т.е. количества кодовых комбинаций хватит для кодирования $33\,$ букв русского алфавита и разрядность двоичного кода будет равна $6,\,$ т.е. $A=000001,\,$ $B=000010,\,$ $B=000011\,$ и т.д.

Информация, представленная в непрерывной форме, может быть выражена с помощью символов некоторого естественного или формального языка. В свою очередь, символы произвольного алфавита могут быть преобразованы в двоичный код. Таким образом, с помощью двоичного кода может быть представлена любая информация, т.е. этот код универсален.


Пример равномерного кода рассмотрен ранее.

комбинациях

Билет №4. Вопрос 1.

Системы счисления. Виды систем счисления. Примеры. Алфавит СС. Правила перевода из 10 СС и в 10 СС.

<u>Система счисления</u> — это знаковая система в которой числа записываются по определенным правилам с помощью символов некоторого алфавита, называемых цифрами.

комбинациях

Количественное значение каждой цифры зависит от её положения (позиции) в записи числа.

Примеры:

Двоичная система счисления, троичная, четверичная, восьмиричная, шестнадцатиричная и т.д.

Не зависит.

Недостатки:

1) Постоянная потребность введения новых знаков для записи больших чисел.

Пример неравномерного кода – азбука Морзе.

- 2) Невозможно представить дробные и отрицательные числа.
- 3) Сложно выполнять арифметические операции, т.к. нет алгоритма их выполнения.

Примеры: Римская с.с., Вавилонская с.с., Египетская, унарная (единичная), Древнеславянская. (поподробнее посмотреть примеры в Интернете)

<u>Основание системы счисления</u> – целое число, которое равно количеству цифр, используемых для изображения чисел в данной системе счисления.

<u>Алфавит</u> – знаки, которые используются для записи чисел в позиционных системах счисления. q – основание системы, где q≥2.

Алфавит q-ичной системы счисления: 0,1...,q-1.

Формула записи развернутой формы числа в q-ичной системе счисления:

$$A_q = a_{n-1} \cdot q^{n-1} + a_{n-2} \cdot q^{n-2} + \dots + a_0 \cdot q^0$$
, fige

Aq - число в q-ичной системе счисления,

 a_i – цифры алфавита системы,

n — число целых разрядов числа.

$$A_q = a_{n-1} a_{n-2} ... a_1 a_0$$
 - свернутая (цифровая) форма.

Алгоритм перевода целого числа из десятичной с.с. в любую другую позиционную с.с.:

- 1) Последовательно выполнять деление исх.целого десятичного числа и получаемых целых частных на основание системы (q), до тех пор пока не получим частное меньшее основания новой системы.
- 2) Получить искомое число путем записи полученных остатков и последнего частного в обратной последовательности.

Обратно:

- 1)Записать число в развернутом виде (над исходным числом, начиная с последней цифры, проставить степени основания, т.е. числа от нуля и далее. Записать сумму из слагаемых, представляющих собой произведение каждой цифры исходного числа, умноженной на новое основание системы в степени, проставленной над этим числом).
- 2)Посчитать значение полученной суммы.
- 3)Полученное значение и будет искомым числом в 10-ичной с.с.

Примеры перевода чисел из 10 с.с. и обратно можно посмотреть на *шк.сайте/интеллект* клуб/информатика/уроки информатики смотрим флэш видео. http://moul49.narod.ru/uroki_flash.html

<u>Двоичной системой счисления</u> называется позиционная система счисления с основанием 2. **Двоичный алфавит**: 0 и 1.

Для целых двоичных чисел можно записать:

$$a_{n-1}a_{n-2}...a_1a_0 = a_{n-1} \times 2^{n-1} + a_{n-2} \times 2^{n-2} + ... + a_0 \times 2^0$$

Пример:
$$10011_2 = 1 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 2^4 + 2^1 + 2^0 = 19_{10}$$

Восьмеричной системой счисления называется позиционная система счисления с основанием 8.

Алфавит: 0, 1, 2, 3, 4, 5, 6, 7.

$$a_{n-1}a_{n-2}...a_1a_0 = a_{n-1} \times 8^{n-1} + a_{n-2} \times 8^{n-2} + ... + a_0 \times 8^0$$

Пример:
$$1063_8 = 1 \times 8^3 + 0 \times 8^2 + 6 \times 8^1 + 3 \times 8^0 = 563_{10}$$
.

Шестнадцатеричная система счисления

Основание: q = 16.

Пример:
$$3AF_{16} = 3 \times 16^2 + 10 \times 16^1 + 15 \times 16^0 = 768 + 160 + 15 = 943_{10}$$
.

Десятичная система	Двоичная система	Восьмеричная система	Шестнадцатеричная система
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F
16	10000	20	10
17	10001	21	11
18	10010	22	12

Билет №5. Вопрос 1.

Измерение информации. Алфавитный подход к измерению информации. Информационный вес символа. Информационный объем сообщения. Единицы измерения информации.

Каждый символ некоторого сообщения имеет определённый *информационный вес* – несёт *фиксированное количество информации*.

Все символы одного алфавита имеют один и тот же вес, зависящий от мощности алфавита. *Информационный вес символа двоичного алфавита* принят за минимальную единицу измерения информации и называется *1 бит* (*bit*).

Информационный вес символа произвольного алфавита

1

2

3

- Алфавит любого языка можно заменить двоичным алфавитом.
- Для кодирования N символов произвольного алфавита требуется і-разрядный двоичный код
- Информационный вес символа = разрядность двоичного кода.
- Мощность алфавита и информационный вес символа алфавита: *N=2ⁱ*

АЛФАВИТ – это вся совокупность символов, используемых в некотором языке для представления информации.

МОЩНОСТЬ АЛФАВИТА (N) – это число символов в алфавите.

1 байт = 8 бит

1 килобайт = 1 Кб = 1024 байта = 2¹⁰ байтов

1 мегабайт = 1 Mб = 1024 Kб = $2^{10} Kб$ = $2^{20} байтов$

1 гигабайт = 1 Гб = 1024 Mб = 2^{10} M б = 2^{20} K б = 2^{30} байтов

1 терабайт = 1 Тб = 1024 Гб = 2^{10} Гб = 2^{20} Мб = 2^{30} Кб = 2^{40} байтов

Информационный объём I сообщения равен произведению количества **K** символов в сообщении на информационный вес i символа алфавита: I = K*i.

Пример 1: Алфавит некоторого племени содержит 8 символов. Каков информационный вес символа этого алфавита?

Решение: Составим краткую запись условия задачи.

N=8,

i :

Известно соотношение, связывающее величины i и N: $N=2^i$.

С учетом исходных данных: $8 = 2^{i}$. Отсюда: i = 3.

Ответ: 3 бита.

Пример 2: *Сообщение, записанное буквами 32-символьного алфавита, содержит 140 символов. Какое количество информации оно несёт?*

Решение:

$$N = 32,$$
 $I = K i,$ $K = 140$ $I = N = 2 i$ $N = 2 i$ $32 = 2^i, i = 5, I = 140 5 = 700 (6 u mos)$

Ответ: 700 битов.

Билет№6. Вопрос 1

Алгебра логики. Высказывание. Логические операции. Таблицы истинности. Логические выражения и построение таблиц истинности для них. Основные законы алгебры логики.

<u>Алгебра логики</u> (Булева алгебра) – раздел математики, в котором изучаются логические операции над высказываниями.

Высказывание – повествовательное предложение, о котором можно сказать *истинно* оно или *ложно*.

<u>Высказывания бывают</u>: *общими* (начинаются со слов: все, всякий, каждый, ни один), *частными* (начинаются со слов: некоторые, большинство....) и *единичными*. Также делятся на *простые* и *составные* (сложные).

Простым называется высказывание, если никакая его часть сама не является высказыванием. Высказывание, которое состоит из простых, называется *сложным*.

Простые высказывания в алгебре логики *обозначаются* буквами латинского алфавита (A, B, C и т.д).

Истина или ложь высказывания обозначается 1 или 0.

 $A = \{Aристотель-основоположник логики\}, A = 1$

 $B=\{Ha\ яблонях\ pacmym\ бананы\},\ B=0$

Высказывание	Какое?	Язык алгебры логики
А=«Лёд-твердое состояние воды»	Единичное высказывание, истинное	A=1
В=«Париж-столица Китая»	Единичное высказывание, ложное	B=0
C=«Все рыбы умеют плавать»	Общее высказывание, истинное	C=1
D=«Некоторые медведи- бурые»	Частное высказывание, истинное	D=1
«Если прозвенит будильник, то я проснусь»	Составное высказывание, истинное	E→F=1

Логические операции

1) <u>Отрицание</u> (инверсия)— добавление частицы НЕ к высказыванию (*Неверно*, *что* ...) Записывается ¬А или А.

Таблица истинности:

Α	¬ A
1	0
0	1

2) <u>Дизьюнкция</u> (логическое сложение) – соединение высказываний союзом ИЛИ. Записывается A V B.

Таблица истинности:

Α	В	AVB
0	0	0
1	0	1
0	1	1
1	1	1

3) Конъюнкция (логическое умножение) – соединение высказываний союзом И.

Записывается А Л В или А&В.

Таблица истинности:

Α	В	A ^ B
0	0	0
1	0	0
0	1	0
1	1	1

4) <u>Импликация (условное высказывание, логическое следование)</u> – если ..., то; когда ...,

Если выглянет солнце, то станет тепло.

Записывается $A \rightarrow B$.

Таблица истинности:

Α	В	A →B
0	0	1
1	0	0
0	1	1
1	1	1

5) Эквивалентность(равнозначность) – тогда и только тогда, когда...

Людоед голоден тогда и только тогда, когда он давно не ел.

Записывается А ↔ В или А~В, читается А равносильно В.

Таблица истинности:

Α	В	$A \leftrightarrow B$
0	0	1
1	0	0
0	1	0
1	1	1

Порядок выполнения операций

- 1. Действия в скобках
- 2. Отрицание
- 3. Конъюнкция (логическое умножение)
- 4. Дизъюнкция (логическое сложение)
- 5. Импликания
- 6. Эквивалентность

Логические выражения и таблицы истинности

Логическое выражение — формула, в которую входят логические переменные и знаки логических операций.

Пример: $F = (A \lor B) \& (\overline{A} \lor \overline{B})$

Для логического выражения можно построить *таблицу истинности*, которая определяет его истинность или ложность при всех возможных комбинациях исходных значений простых высказываний.

Построение таблицы истинности:

- 1. Определить количество строк в таблице по формуле 2ⁿ, где n количество логических переменных.
- 2. Определить количество столбцов таблицы: количество логических переменных + количество логических операций.
- 3. Построить таблицу истинности, обозначить столбцы, внести всевозможные наборы исходных данных логических переменных.
- 4. Заполнить таблицу истинности, выполняя базовые логические операции в необходимой последовательности.

Пример: Построить таблицу истинности для логического выражения $F = (A \lor B) \& (\overline{A} \lor \overline{B})$

- 1. Количество строк таблицы $2^2 = 4$, т.к. в формуле две переменные A и B.
- 2. Количество столбцов: 2 переменные + 5 логических операций = 7.

A	В	AvB	$\overline{\overline{A}}$	B	$\overline{A} \vee \overline{B}$	$(A \vee B) \& (\overline{A} \vee \overline{B})$
0	0	0	1	1	1	0
0	1	1	1	0	1	1
1	0	1	0	1	1	1
1	1	1	0	0	0	0

Равносильные логические выражения - это выражения, у которых последние столбцы таблиц истинности совпадают, обозначают "=".

Основные законы формальной логики

- \blacksquare Закон тождества A = A
- **‡** Закон непротиворечия **А&**¬**A=0**
- Закон исключения третьего А∨¬А=1
- **‡** Закон двойного отрицания ¬¬А=А

Свойства констант

Законы алгебры логики

 \sharp Идемпотентно<u>сть</u> $A \lor A = A$ A & A = A

 \blacksquare Коммутативность $A \lor B = B \lor A$ A & B = B & A

 \bot Ассоциативность $A \lor (B \lor C) = (A \lor B) \lor C$ A &(B & C)= (A & B) &C

Дистрибутивность

 $A \lor (B \& C) = (A \lor B) \& (A \lor C)$

 $A \& (B \lor C) = (A \& B) \lor (A \& C)$

Поглощение

 $A \lor (A \& B) = A \qquad A \& (A \lor B) = A$

Законы де Моргана

 $\neg (A \lor B) = \neg A \& \neg B \qquad \neg (A \& B) = \neg A \lor \neg B$

Билет №7. Вопрос 1.

Алгоритмы и исполнители. Понятие алгоритма. Исполнитель алгоритма. Свойства алгоритма. Способы записи алгоритмов.

Алгоритм - это предназначенное для конкретного исполнителя описание последовательности действий, приводящих от исходных данных к требуемому результату, которое обладает свойствами:

- дискретности
- понятности
- определённости
- результативности
- массовости

Исполнитель алгоритма - это некоторый объект (человек, животное, техническое устройство), способный выполнять определённый набор команд.

Программа – последовательность команд на языке программирования, которые предназначены для реализации заданного алгоритма.

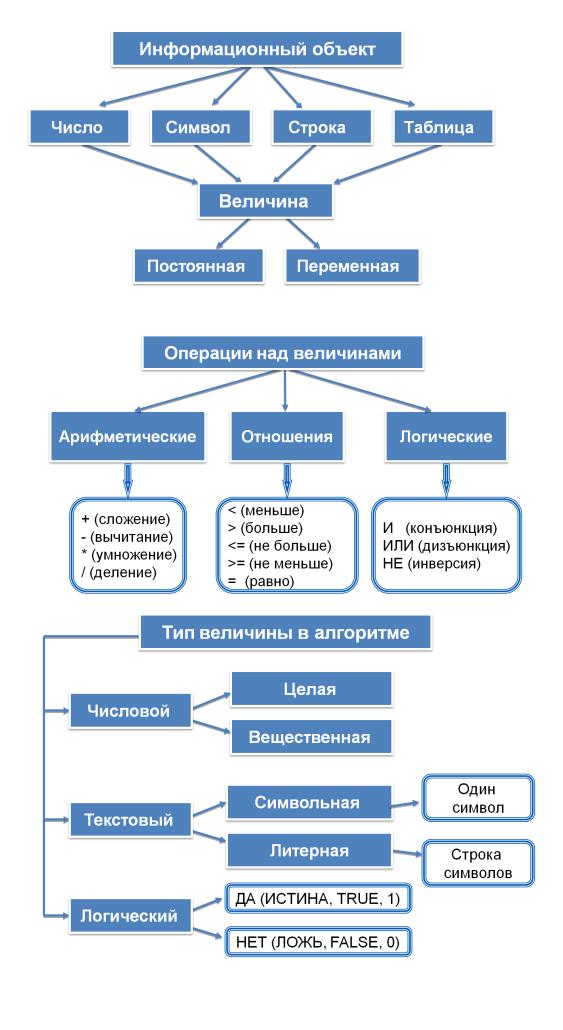
Блок-схема – графическое представление алгоритма в виде последовательности связанных между собой функциональных блоков (стандартных графических элементов), каждый из которых соответствует выполнению одного или нескольких действий.

Условное обозначение	Назначение блока			
	Начало или конец алгоритма			
	Ввод или вывод данных. Внутри блока перечисляются данные через запятую.			
	Процесс. Внутри блока записываются матем. формулы и операции для обработки данных.			
	Проверка условия. Внутри блока записываются логические условия. Имеет два выхода Да(+) и Нет(-).			
I = 1, 20, 2	Счетчик. Перебор значений (цикл).			
	Направление.			

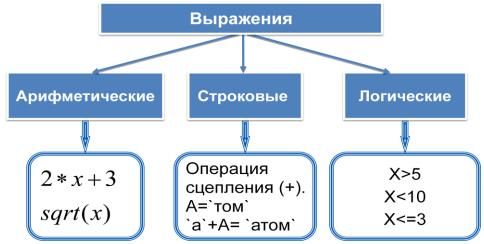
Билет №8. Вопрос 1.

Объекты алгоритмов. Величины. Выражения. Команда присваивания. Табличные величины.

Алгоритмы описывают последовательность действий над некоторыми *информационными объектами*.

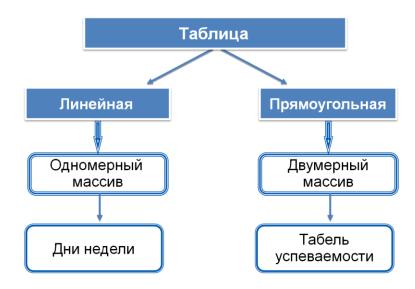

Основные информационные объекты:

1. **Величина** в информатике – это отдельный информационный объект.


Над величинами производятся **операции** (*Операнды* - объекты, над которыми выполняют операции). Каждая величина имеет свой **тип** и **имя**.

Для ссылок на величины используют их **имена** (идентификаторы). Имя величины может состоять из одной или нескольких латинских букв, из латинских букв и цифр, первый символ должен быть обязательно буквой (A, ANC, Б2).

Значение величины выражается числами или словами, символами.


2. *Выражение* - языковая конструкция для вычисления значения с помощью одного или нескольких операндов.

3. Значение величины меняется (задается) *командой присваивания «:=»* (имя величины слева от знака, значение – справа).

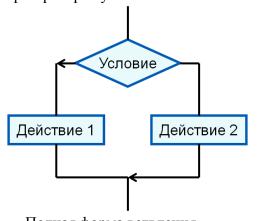
4. В практической деятельности человека часто используются всевозможные таблицы. Таблица (массив) - набор некоторого числа однотипных элементов, которым присвоено одно имя. Положение элемента в таблице однозначно определяется его индексами. Массив обозначается, например, A[i], а отдельный элемент A[1], A[2] и т.д. Или двумерный массив A[i;j] и элемент A[1;2].

Билет №9. Вопрос 1.

Основные алгоритмические конструкции. Следование. Ветвление. Повторение. Вспомогательный алгоритм.

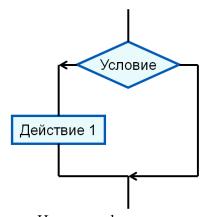
Для записи любого алгоритма достаточно трёх основных алгоритмических конструкций:

- следования,
- ветвления,
- повторения.
- 1. <u>Следование</u> алгоритмическая конструкция, отображающая естественный, последовательный порядок действий.


Алгоритмы, в которых используется только структура «следование», называются **линейными алгоритмами**.

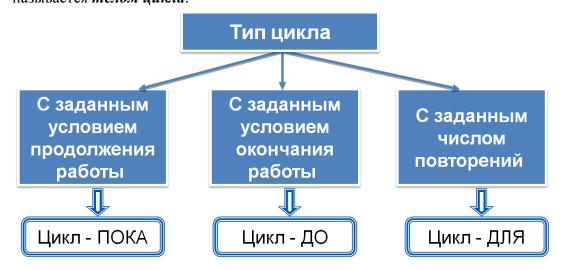
фрагмент блок-схемы линейного алгоритма

2. <u>Ветвление</u> - алгоритмическая конструкция, в которой в зависимости от результата проверки условия («да» или «нет») предусмотрен выбор одной из двух последовательностей действий (ветвей).


Алгоритмы, в основе которых лежит структура «ветвление», называют **разветвляющимися.** Существует две формы ветвления в зависимости от набора действий, которые надо выполнять при проверке условия – **полная** и **неполная**.

Полная форма ветвления Набор команд на Кумире:

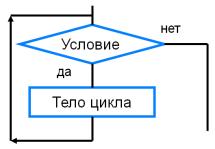
если <условие>
то <действия 1>
иначе <действия 2>
все



Неполная форма ветвления

если <условие> **то** <действия 1> **все**

3. <u>Повторение</u> - последовательность действий, выполняемых многократно. Алгоритмы, содержащие конструкцию повторения, называют циклическими или циклами. Последовательность действий, многократно повторяющаяся в процессе выполнения цикла, называется телом цикла.

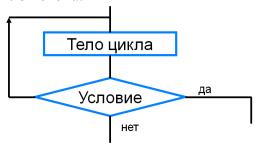


<u>Цикл с заданным условием продолжения работы</u> (цикл-ПОКА, цикл с предусловием)

Набор команд на Кумире:

нц пока <условие> <тело цикла (последовательность действий)> кц

Блок-схема:

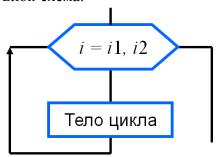


<u>Цикл с заданным условием окончания работы</u> (цикл-ДО, цикл с постусловием)

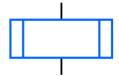
Запись на алгоритмическом языке:

нц <тело_цикла (последовательность действий)> кц при <условие>

Блок-схема:



<u>Цикл с заданным числом повторений</u> (цикл-Д<u>ЛЯ, цикл с параметром)</u>


Запись на алгоритмическом языке:

нц для *i* от *i1* до *i2* <тело_цикла (последовательность действий)> ки

Блок-схема:

<u>Вспомогательный алгоритм</u> - алгоритм, целиком используемый в составе другого алгоритма. Алгоритм, в котором прямо или косвенно содержится ссылка на него же как на вспомогательный алгоритм, называют *рекурсивным*.

обозначается в блок-схемах - блок «предопределённый процесс».

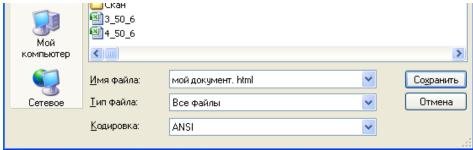
Вспомогательный алгоритм делает структуру алгоритма более простой и понятной. Для возможности ссылки на вспомогательный алгоритм он обязательно должен носить имя.

Билет №10. Вопрос 1.

HTML – язык разметки гипертекста. Понятие гипертекста. Основные теги веб-документа. Алгоритм сохранения web – страницы. Тег BODY и его атрибуты. Тег вставки рисунка. Тег бегущей строки. Тег гиперссылки.

HTML-документ, по сути, представляет собой обычный текстовый файл. Редактировать Webстраницы, опубликованные в сети Internet, может лишь тот, кто их создал, а не любой пользователь, поскольку каждая страница имеет свой уникальный адрес (URL) и существование двух разных страниц с одинаковым адресом исключено. Для создания Web-страницы необходимо знать основные теги (команды) языка html, которые распознает браузер и отображает их определенным образом на странице в сети.

Web-страницы отличаются от обычных документов тем, что заполнены *гипертекстом*, т.е. текст, который может содержать текст, графические файлы и *ссылки* на другие ресурсы (документы). Как раз таки ссылки и являются отличительной чертой гипертекста.


Все Web-страницы имеют определенную структуру, т.е. обязательные теги документа:

```
<html>
<head>
<title>HTML структура документа</title>
</head>
<body>
TEKCT ДОКУМЕНТА
</body>
</html>
```

- <html> </html> обязательные, определяют **HTML** документ.
- <head> </head> определяют секцию со служебной информацией, содержат инструкции для поисковиков, для браузеров, скрипты.
- <title> </title> определяют основной заголовок web страницы.
- <body> </body> обязательные, определяют видимую часть документа.

Алгоритм сохранения Web-страницы:

- 1. Открыли редактор Блокнот.
- 2. Набрали в нём нужный набор тегов (команд) по вашему усмотрению.
- 3. Нажать на меню Файл в левой части окна Блокнота.
- 4. Выбрать в появившемся меню действий «Сохранить как...»
- 5. В новом окне в поле для имени файла набираем его название и задаем расширение(через точку) веб-страницы html. Тип файла вибираем «все файлы» и место для сохранения.

- 6. Ваш документ отобразится в нужной папке со значком браузера. Страничка готова.
- 7. Чтобы её редактировать достаточно нажать на неё правой кнопкой мыши, выбрать «открыть с помощью», и выбрать программу Блокнот.

Тег <BODY > имеет атрибуты, некоторые из них перечислены ниже:

- bgcolor="..." определяет цвет фона документа;
- background="..." указывает браузеру местоположение файла (*.gif или *.jpg), который необходимо использовать в качестве фонового рисунка. В кавычках указывается абсолютный или относительный путь к файлу. Окно полностью заполняется изображением, начиная с верхнего левого угла;
- text= "..." устанавливает цвет текста;
- alink="..." определяет цвет активной ссылки;
- link="..." определяет цвет не просмотренной ссылки;
- vlink= "..." определяет цвет просмотренной ссылки;
- topmargin= "..." устанавливает границу верхнего поля;
- **leftmargin**= "..." граница левого поля;

Теги форматирования текста:

```
<strike>...</strike> - перечеркнутый текст <B>...</B> - жирный <U>...</U> - подчеркнутый <i>...</i> - курсив <hr> - горизонтальная линия   - определяют параграф <br> - переход на новую строку
```

Для форматирования отдельного фрагмента текста часто используется тег ****, имеющий несколько атрибутов:

face – для задания гарнитуры, size – для задания размера,

color – для задания цвета.

Пример: Текст

Тег вставки рисунка:

src — куда ссылаться (откуда брать рисунок)
="pic.jpg" - адрес изображения
width — ширина изображения в пикселях
height=290 — высота изображения
alt="Эволюция" — подпись при наведении курсора на изображение

Задание бегущей строки

Одним из способов оживления Web-страницы является задание бегущей строки в тексте документа. Для этого используется контейнер *<MARQUEE>...</MARQUEE>* со следующими атрибутами:

- width="..." задает ширину бегущей строки в пикселях или процентах от ширины экрана;
- height="..." устанавливает высоту бегущей строки (в пикселях и в процентах);
- *bgcolor*="..." определяет цвет фона бегущей строки. Значениями этого атрибута являются стандартные коды цветов;
- *behavior*="..." задает тип движения (поведение) бегущей строки и имеет следующие значения: **scroll** циклическая прокрутка строки из одного конца в другой, **slide** текст появляется с одного края и останавливается у другого, **alternate** -текст перемещается от одного края к другому (напоминает движение маятника);
- *direction*="..." определяет направление движения бегущей строки. Имеет следующие значения: left изображение движется влево по строке, right изображение движется вправо по строке; up вся строка перемещается снизу вверх, down строка движется сверху вниз;
- *scrollamount*="..." определяет число пикселей, которые отделяют один текст от последующего;
- *scrolldelay*="..." указывает задержку в миллисекундах перед появлением последующего текстового блока;
- loop="..." задает число повторов анимации (любое положительное число). По умолчанию или при указании значения -1 (infinity) браузер будет прокручивать текст бесконечное число раз.

Ссылки на другую Web-страницу или другой Web-сайт (гиперссылки).

Важнейшим понятием в HTML является *гиперссылка*, которая позволяет связать текст или какойлибо объект с другими гипертекстовыми документами. Текст, который является гиперссылкой, как правило, выделяется цветом и подчеркивается. Для определения ссылки используется тег <A>, структура которого имеет следующий вид:

текст ссылки

Здесь *filename* - имя файла или адрес Internet, на который необходимо сослаться, а *текст ссылки* - текст гипертекстовой ссылки, который будет непосредственно показан в HTML-документе.